

Novel electrode PtCr/PAA (polyamic acid) for efficient ethanol oxidation reaction

Jing Zhang

Supervisor: Omowunmi Sadik

Material Science and Engineering

& Chemistry Department

11/08/2015

State University of New York

Outline

- Introduction
- Objectives
- Preliminary Results
- Summary & Conclusions
- Acknowledgment
- Reference

Fuel Cells

Microbial Fuel Cells

(MFC):

❖ Direct Alcohol Fuel Cells:

Direct Methanol fuel cells (DMFCs)

A METHANOL FUEL CELL

Carbon dioxide

CH₃OH H O D E O₂ Air

Water

Direct Ethanol Fuel cells (DEFCs)

Ethanol is a promising fuel in the socalled direct ethanol fuel cell (DEFC)

- less toxic
- *easy to store and transport due to its relatively higher boiling point
- *has higher energy density due to the nature of 12 electron transfer
- ❖ has been qualified as a substantial energy source since it can be produced in large quantities from agriculture products, even some

waste part, like grass.

Factors Affecting the efficiency of fuel cells

- Design of the device
- Nature of chemical substrate
- > The internal and external cell resistances
- > The ionic strength
- > The electrode materials

Carbon materials

Catalyst/ Carbon Challenge : NOT STABLE

Nafion Membrane

Vulcan Membrane

Objectives- Novel electrode material for EOR

For the electrochemical route, the complete oxidation product is CO₂.

$$C_2H_5OH + 3H_2O \rightarrow 2CO_2 + 12H^+ + 12e^-$$

The partial oxidation to acetaldehyde and acetic acid releases 2 and 4 e-, $re\{C_2H_5OH \rightarrow CH_3CHO + 2H^+ + 2e^-\}$

and

$$CH_3CHO + H_2O \rightarrow CH_3COOH + 2H^+ + 2e^-$$

Novel electrode material PAA/PtCr/ GC

What is PAA?

Schematic representation of the formation of PAA.

Why Polyamic acid (PAA)?

- Conductive
- Biocompatibility
- Ease of preparation
- Flow of electronic charges
- Redox stable
- Surface functional groups
- Permeability

PAA stabilized the nanoparticles while maintaining wettability

PdNPs stabilized with PAA

X-ray diffraction pattern shows crystalline particles were formed with uniform size & random size distribution.

PdNPs with no PAA

HRTEM of nanosilver with PAA: Particles are twinned with 5 fold symmetry

Classic PAAs

- ➤ Stable :300°C
- > Flexible
- Mechanically strong
- Porous

Temperature dependence of PAA a-75 °C,b-150°C,c-250°C,d-300°C

Fluorescent PAA biomembranes: A-PAA-CS with %0.3 GA, B-PAA-DA, C-1-PAA 15 h incubation D- m-PAA-DA with for 15 h

Working Electrodes Designed

- PAA/GC (Glass Carbon)
- Pt/GC
- « Cr/GC
- PtCr/GC
- PAA/Pt/GC
- » PAA/PtCr/GC

PAA spin coated layer

Pt particles electrodeposited

Pt and Cr particles electrodeposited

Electrodeposition of Pt on GC

a) SEM images of Pt deposited on GC surface and EDS spectra as proof the existence of the platinum; b) Cyclic voltammograms of electrodeposition

Three-electrode system:

Working Electrode – GC

Counter Electrode - Carbon

Reference Electrode - Ag/AgCl

Conditions: $0.01M \text{ HCl} + 8 \times 10^{-4} \text{ M PtCl}$

Scan rate: 10 mV/S, Sweep 40 cycles

method

Licon ouchosinon or i tor or

Three-electrode system:

Working Electrode – GC,

Counter Electrode - Carbon

Reference Electrode - Ag/AgCl

Conditions: $0.01M \text{ HCl} + 8 \times 10^{-4} \text{ M PtCl}_4$

 $+2\times10^{-4}$ M CrCl₂

Study of PtCr/GC and Pt/GC for EOR

Cyclic voltammograms of ethanol oxidation reaction in 0.1 M HClO₄ and 1 M ethanol of PtCr and Pt.

Cyclic voltammograms of ethanol oxidation reaction in 0.1 M HClO₄ and 1 M ethanol of PAA

Cyclic voltammograms of ethanol oxidation reaction in 0.1 M HClO₄ and 1 M ethanol of Cr

Stability study of PAA/PtCr/GC for EOR

			i Otoritiai	, •	
m-2	1.0	601 700 800 900			7
$\overline{\mathbf{c}}$	0.8				XI .
₹	4				M. VI
Current density/ mA cm ⁻²	0.6-				
SU	. 1				
용	0.4-				
Ħ	4		_		
<u>.</u>	0.2-				
Ę				The state of the s	
O				The state of the s	
	0.0-				
	<u> </u>	0.2 0.4	, 0,0	10	1.2 1.4
	0.0	0.2 0.4	0.6 0	.8 1.0	1.2 1.4
			Potential	/ V	

Scan cycles	Current density	Time (h)	Scan cycles	Current density	Time (h)
1	0.00	0.00	500	0.81	38.88
16	4.85	1.24	600	0.25	46.67
100	1.40	7.78	601	0.32	46.74
200	0.86	15:56	700	0.22	54.44
300	0.37	23:33	800	0.18	62.22
301	2.45	23:41	900	0.05	70.00
400	1.12	31.11			

Summary & Conclusions

- Catalyst PtCr is more stable on the glass carbon than Pt particles. That will help to improve the efficiency of fuel cell.
- ❖ PAA alone is not active towards the ethanol oxidation reaction. Conversely, the Pt/GC, PtCr/GC and PAA/PtCr/GC electrodes exhibit oxidation currents for ethanol oxidation reaction.
- After PtCr/GC is coated with PAA, based on the current of ethanol oxidation, the activation of working electrode decreased. This is due to the insufficient conductivity of PAA.
- Without coating of PAA, the electrodeposited catalysts are very easily lost into solution.

References

- Jochen Friedl a,b, Ulrich Stimminga,b,c,*,1, Model catalyst studies on hydrogen and ethanol oxidation for fuel cells, *J. Friedl, U. Stimming / Electrochimica Acta 101 (2013) 41–58*
- Wenxin Du,[†] Qi Wang,[§] David Saxner,^{||} N. Aaron Deskins,^{||} Dong Su,[^] James E. Krzanowski,[‡] Anatoly I. Frenkel,[#] and Xiaowei Teng^{*,†}, Highly Active Iridium/IridiumTin/Tin Oxide Heterogeneous Nanoparticles as Alternative Electrocatalysts for the Ethanol Oxidation Reaction, *J. Am. Chem. Soc. 2011*, 133, 15172–15183
- Min Ku Jeon, Paul J. McGinn*, Composition dependence of ternary Pt–Ni–Cr catalyst activity for the methanol
 - electro-oxidation reaction, Journal of Power Sources 194 (2009) 737–745
- Eungje Lee, In-Su Park, and A. Manthiram*, Synthesis and Characterization of Pt-Sn-Pd/C Catalysts for Ethanol Electro-Oxidation Reaction, J. Phys. Chem. C 2010, 114, 10634–10640
- Yu-Wei Chang, Chen-Wei Liu, Yu-Chen Wei, Kuan-Wen Wang*, Promotion of PtRu/C anode catalysts for ethanol oxidation reaction by addition of Sn modifier, *Electrochemistry Communications* 11 (2009) 2161–2164
- M. Metzlera, A. Thorwarta, S. Zellera, T. Diemantb, R.J. Behmb, T. Jacoba,*, Electroless deposition of Au/Pt/Pd nanoparticles on p-Si(1 1 1) for thelight-induced hydrogen evolution reaction, Catalysis Today 244 (2015) 3–9
- Ye Wang a, Fei-Fei Shi b, Yao-Yue Yang a, Wen-Bin Cai a,*, Carbon supported PdeNieP nanoalloy as an efficient catalyst for ethanol electro-oxidation in alkaline media, *Journal of Power Sources* 243 (2013) 369e373

Acknowledgment

- Professor Omowunmi Sadik.
- Undergraduate student Avraham Mamenko.
- All the group members in our lab.
- Binghamton University
- Audience

Thank You for Your Attention!

Any Questions?